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SUMMARY 
 

An efficient, accurate, multi-grid algorithm has been implemented for the modeling of airborne, land, and marine controlled source 

electromagnetic data, providing accurate 3D depth inversions of frequency and time domain data with cost-effective compute timelines. 

This is achieved by decoupling the inversion grid from the modeling grid used in the finite difference simulation of the fields. The 

approach helps also when inverting data from different methods jointly. 

 

The model grid consists of columns of prisms that can be arbitrarily dimensioned. This helps to discretize in particular the topography 

and other interfaces without densely discretizing the upper part of the resistivity model. By setting the horizontal smoothing 

accordingly, the general geological setting of the survey area can be easily taken into account.  

 

Depending on the specifics of the implementation, other structural information will impact the chosen discretization. 
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INTRODUCTION 
 

The typical AEM data set can consist easily of several thousands of measurement points distributed over large areas. Modelling this 

data for arbitrary resistivity distributions is computationally demanding and full multidimensional inversions are out of the question. 

However, several advances in recent years resulted in algorithms that can tackle these problems (Cox and Zhdanov, 2008; Cox et al., 

2010, Haber and Schwarzbach, 2014). While the underlying forward solvers use different approaches, the codes make use of the fact 

that the sensitivity of an AEM system drops of quickly laterally and thus that only a fraction of the total survey area is relevant for a 

certain measurement point. 

 

Commer and Newman (2006) presented an inversion approach for marine controlled-source EM (mCSEM) data, where the model grid 

on which the inversion was carried out could be defined independent of the grid used in the finite difference (FD) forward modeling 

step. The advantage is that the FD grid can be tailored to the specific transmitter-receiver configuration and the frequency or time range 

that needs to be modelled. For example, higher frequencies required denser grids. Lower frequencies can be modelled using coarser 

grids, but these need to span larger volumes. The approach was later adopted by Yang et al. (2014) to speed up the inversion of AEM 

data. And while the survey areas for airborne and marine EM surveys are comparable, the computational savings in the airborne case 

are much more substantial due to the laterally rapidly decaying sensitivity of AEM systems compared with the typical marine setup.   

 

The downside of the approach is that an additional layer is required during the inversion mapping the model onto the different finite 

difference grids and conversely sensitivities computed on the FD grid back into model space, which increases the complexity of the 

code. 

 

Still, when developing the EM inversion code otze (starting 2009), the same concept of having a model grid that is not coupled to the 

FD grid was adopted. However, while the before mentioned studies retained a structured, rectilinear model mesh, we implemented an 

inversion code that acts on a grid that uses the standard, structured discretization in x and y directions but arbitrary, horizontal interfaces 

vertically (Scholl and Sinkevich, 2012).  

 

This type of model discretization makes it possible to represent known resistivity interfaces better than standard rectangular meshes 

without having to go to tetrahedral meshes. In particular, this helps to model topography without having to increase the number of 

vertical levels throughout the model. Also, this can be used to introduce general knowledge about the stratigraphy in the area into the 

inverse process. 

 

In this paper we discuss the implementation, its application and show how it can be used to introduce a priori information in the inverse 

process. 

 

 

FORWARD MODELLING AND INVERSION 

 
The inversion code acts on 2D or 3D models. Both types of models can be inverted using either a 1D forward algorithm (Weidelt, 

2006) or multidimensional solver based on a FD approach. For a 2D model, the latter would be a 2.5D forward solver (Stoyer and 
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Greenfield, 1976). The 3D solver uses a multigrid preconditioner for efficient simulations (Plessix et al., 2007). Computations are 

either carried out in frequency domain or in time domain with an implicit time stepping scheme. 

 

Regardless of the dimensionality of the forward solver, the numerical solutions are capable to model arbitrary transmitter/receiver 

configurations and include system specific details like sensor and transmitter size and shape, current waveforms and primary stripping 

(Smith, 2001). All solutions were verified for airborne EM (AEM) data by comparison with the code Airbeo (Raiche et al. 2007). 

 

For 3D models, otze can also invert magnetic and gravity or gravity gradiometry data, either alone or jointly with EM data. The forward 

operators for this data is based on the equations presented in Li and Chouteau (1998).     

 

The inversion itself is of the typical regularized least-squares kind that minimizes a cost function of the form 

 

Ψ(m)=(d-F(m))T W(d-F(m))+λ(m-m0 )TK(m-m0 ), 
 

where d is the observed data vector, F is the forward modeling function, m is the unknown model vector, W is a weighting matrix 

(usually the inverse variance or covariance), λ is the regularization parameter, K is a discrete form of the stabilizing function as 

regularization term, and m0 is an (optional) a priori model.  

 

Inversion on 2D models is done with an Occam inversion approach (Constable et al., 1987). Inversions on 3D models are done with a 

preconditioned gradient based method (Rodi and Mackie, 2001). The inversion minimizes the data misfit as well as additional 

regularization terms. The latter include the commonly employed smoothness constraints and a priori damping as well as other terms 

which can be used to integrate a priori information, and for lithological classification. 

 

 

MAPPING OF THE MODEL 
 

One of the key aspects of the inverse program is that the 

model is decoupled from the meshes used in the forward 

simulations. In order to carry out the latter, the model has 

to be mapped onto the finite difference grid.  

 

This happens on the fly using the scheme laid out by 

Moskow et al. (1999) and Commer and Newman (2006). 

Note that due to the directionality of the averaging 

scheme and the different volumes over which the model 

is averaged, FD elements in different directions (e.g. 

ρx,FD and ρz,FD in Figure 1) typically will get different 

resistivities, even if the original model is isotropic. 

 

At the air interface, the cells at that boundary are broken 

up into even smaller pieces during the averaging process. 

This procedure was found to provide more accurate 

results than the standard stair-stepping used in more 

conventional finite difference approaches (Scholl and 

Sinkevich, 2012). 

 

The inverse process requires the computation of the 

sensitivities or the gradient, depending on the algorithm. 

These are computed using the adjoint method 

(McGillivray et al. 1994). The resulting 

sensitivities/gradients are properties on the FD grid that 

have to be mapped back to the model grid.  

 

Yang et al. (2014) use an interpolation method for this 

mapping. However, we found that this approach resulted 

in inaccurate sensitivities, in particular once the 

inversion started to introduce significant structures in the 

model.  

 

Instead, we employ the chain rule to compute the sensitivity Sij  of datum i with respect to the model cells j as  

 

𝑆𝑖𝑗 =∑𝑆𝑖𝑘
∗
𝜕𝜌𝑘

∗

𝜕𝜌𝑗
𝑘

 

 

Figure 1: Sketch illustrating how the unstructured model (coloured 

rectangles; blue boxes represent air) is mapped onto the structured 

finite difference grid (grey). The white rectangles mark the volumes 

over which the model has to be averaged for two different elements of 

the FD grid. 
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where Sij
* is the sensitivity of datum i w.r.t. the resistivity of FD grid element k and ∂ρk*/∂ρ j is the derivative of the resistivity of FD 

grid element k w.r.t. the resistivity of cell j. The latter is estimated with a simple perturbation scheme. While the time spent on 

computing the sensitivities this way is not negligible, we found that the convergence of the inversion improves significantly, overall 

resulting in a reduction of wall-clock time. 

 

The gravity and magnetics forwards are based on solutions for individual prisms. Since their distribution is irrelevant, no complex 

mapping is required when forward modelling or inverting potential field data. 

 

 

FIELD DATA EXAMPLES 

 

Time domain (Helitem®) as well as frequency domain data were surveyed by CGG in the Alberta foothills area in Canada, as part of 

a near-surface characterization program. The upper panel in Figure 2 shows a 2D inversion result using both data sets along one of the 

flight lines. In this case the model was set up so that it consists of several layers that follow the significant topography while getting 

thicker with depth. The discretization of the topography is very fine while keeping the overall number of cells low. 

 

The triangles indicate three example positions for the frequency domain (red) and time domain (green) system. The panel in the centre 

shows vertical resistivities of the FD grids used for the two frequency domain systems; the lowermost panel instead shows the same 

for the time domain point. The grid spans a larger area but is significantly coarser than the grids for the frequency domain systems 

which operate at higher frequencies. 

 
Figure 2: 2D inversion result from a survey in Alberta, Canada (top); FD grid for two measurement points of the frequency 

domain system (centre); FD grid for one of the time domain points (bottom). 

 

The decoupled model and FD grids allow the user to combine the resolution capabilities of different data sets without caring much 

about finding computational grids that accurately model both methods simultaneously. An example for the same data set is shown in 

Figure 3. The uppermost panel shows the inversion result using only the frequency domain system. It provides good resolution at the 

near surface, but structures start to fade out about 100 m bgl. The panel in the center shows the result of inverting only the time domain 

data. The structures now extend to greater depths but show less structure in the near surface. The lowermost panel shows the result of 

a joint inversion of both data sets which retains the near surface structure of the frequency domain result, but also produces deeper 

reaching dipping structure that matches the known geology in the area (Langenberg and LeDrew, 2001). 
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Figure 3: Result of a 2D inversion using only the frequency domain data (top), only the time domain data (centre) and both 

together in a simultaneous joint inversion (bottom). The dots above the topography indicate the measurement points for the 

frequency (red) and time (blue) domain system, respectively. 

 

Finally, Figure 4 shows the result of a 3D inversion of time domain data collected with the Helitem35C® system over a mineral deposit 

in western Tasmania, Australia (Smit et al., 2018). Again, the modelling grid was chosen to follow the topography. Specifically, the 

figure shows a section and grid level of the model at approximately 80 m bgl. Superimposed on the 3D inversion result is a geobody, 

partially outlining a known mineral alteration zone which matches the conductive anomaly roughly in the centre of the model.  

 

 

INCORPORATING STRUCTURAL A PRIORI 

INFORMATION 

 
While other regularizations are available in otze, the most 

commonly used stabilizer is a smoothness term. Depending on the 

problem at hand, the smoothing operator can further be modified 

to include tear surfaces or sharpening elements like Minimum 

Gradient Support (Zhdanov, 2002) although those are beyond the 

scope of this paper. 

 

In fact, otze uses two separate smoothing terms, one that 

minimizes the norm of the horizontal gradients, while the other 

minimizes the vertical resistivity gradients. Depending on the 

geological environment, these two might be weighted differently 

w.r.t. each other. For example, in sedimentary settings, the 

horizontal smoothing will get a larger weight than the vertical 

smoothing due to the expected layering. 

 

Horizontal smoothing is relatively straightforward with normal, 

structured grids. With the model discretization used here, however, 

adjacent cells are not necessarily on the same vertical level. Instead 

of smoothing a cell strictly to its horizontal neighbours, we chose 

to connect each cell to only one neighbouring cell; which cell to 

connect to would be defined by how the model was set up. 

 

Figure 5 illustrates this with an example of a 2D result for data from a time domain data set collected with the TEMPEST system in 

Australia. The uppermost panel shows the section along the full flight line. The second panel shows a close up of the central part of the 

upper section. The model in this case shows strictly horizontal layers. As a result, the smoothing operator supports a horizontally 

layered model as well. This setup would be chosen if the stratigraphy is expected to be mostly horizontal and changes in topography 

are mostly due to erosion. Note the irregular cells at the air interface to capture the topography, some of which do not have horizontal 

neighbours. The lowermost panel shows a grid where the layers follow the topography. Likewise, the horizontal smoothing supports 

features following the topography, which would be useful if the subsurface is supposed to be a folded stack of layers. 

Figure 4: 3D inversion result for a time domain data set 

collected over a mineral deposit in Tasmania, Australia. The 

white geobody represents a mineral alteration zone. 
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Given that the section exhibits only a fairly 

tame topography, the effect of the change in 

smoothing is not strong, but still noticeable in 

the notch below the hill at around 66 km. 

 

 

 

 

 

 

 

 

 

Another option to include geological a priori information is geosteering (Scholl et al. 2017). Here, an external gradient field that is 

describing structural features in the area is added to the inversion process via an additional cross-gradient regularisation term (Gallardo 

and Meju, 2003). This additional term then supports models in which the gradients in the resistivity are either parallel or antiparallel 

to the given gradient field.  

 

While Scholl et al. (2017) focuses more on the results for some case studies in 2D and 3D, we would like to discuss some details of 

implementation as the way the gradients are computed in the code is also affected by the potentially arbitrary vertical discretization of 

the model. 

 

 
Figure 6: Sketches showing the workflow from surface dips, to gradients to the gradient components as used in the inversion. 

 

As an example of this, Figure 6 shows a few sections, again taken from the dataset from Alberta. The uppermost panel shows a 2D 

section including some arrows that are supposed to indicate surface dips that have been derived from a geological map (Langenberg 

and LeDrew, 2001). These dips define planes in which the strata are supposed to stay constant, so the desired gradients which indicate 

the direction of change are normal to this plane as shown in the second panel.  

 

The vector components are then converted into the correct coordinate system. The result is shown in the lowermost panels. For both 

components, the magnitude of the components decreases with depth. This reflects that the dips are considered more reliable at the 

surface but less so at depth.  

 

While the relation between the x-components and the direction of the arrows in the second panel is obvious (the values are negative 

when the arrows point to the bottom left and positive otherwise), the result for the z-component at first might look confusing as it 

exhibits strong vertical features. The reason for this is that the gradient components are transformed into the coordinate system of the 

model. In this case the cell layers follow the topography, so while the vertical base vector points downwards, the one in x-direction 

points along the topography, i.e. the base is not orthogonal. 

Figure 5: 2D inversion result for a fixed 

wing, time domain survey in Australia. 

From top to bottom: Complete section, 

zoom in of a model with strictly horizontal 

layers, zoom in of a model with layers 

following the topography. 
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Figure 7 shows the situation for the right side of the section: The 

gradient at the surface points left and down. The model coordinate 

system is oriented so that x increase to the right. This means that the 

“x”-component (the one following the slope of the model, red in the 

figure) needs to be negative in both cases.  

 

In case a), flipping and scaling the red arrow is enough to reproduce 

the green arrow. The vertical component is not needed and thus zero. 

In the other case, however, a flipped red arrow – while producing the 

correct direction horizontally – will go in the upwards, unlike the 

green arrow. Therefore, a strong contribution from the yellow arrow 

is needed to fully reconstruct the green arrow. 

 

And this is exactly the pattern that we see in the lowermost section 

of figure 6: When the elevation increased while going towards the 

right, the z-component is close to zero, while being larger than 1 

otherwise. 

 

The result of including the dips in the inversion is shown in Figure 8 

where the section obtained from inversion steered by the surface dips 

matches the known geology better than the blind inversion without 

additional information. 

 

 

 
Figure 8: Result of the inversions of time domain data without using surface dips (top) and with using geosteering (bottom). 

  

 

CONCLUSIONS 
 

Using a vertically unstructured grid helps capture the topography and other features better than standard rectilinear grids without having 

to add an excessive number of thin layers. The method can also help to introduce stratigraphic information about the survey area in the 

inversion workflow when setting up the smoothness regularization accordingly.  

 

However, the option to do so by defining which of the cells in the adjacent column is considered its “horizontal” neighbour comes at 

the price of more bookkeeping in an algorithm that already has an additional layer of complexity due to decoupling the model grid 

from the computational grids. Furthermore, the specifics of the implementation might have to be taken into account when implementing 

other geometrical, cell-based regularizations like the x-gradients in the example presented here. 
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